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Abstract

The detection response task (DRT) is a measure of workload that can assess the

cognitive demands of real-world multitasking. It can be configured to present simple

stimuli of several modalities, including auditory and visual signals. However, the

concurrent presentation of the DRT stimuli alongside another task could cause

dual-task interference, and the extent of this interference could be different based on the

DRT’s configuration. It is necessary to consider the characteristics of the DRT stimulus,

such as modality, to identify a minimally intrusive stimulus. Fifty participants

completed a computer-based one-dimensional tracking task alongside a DRT. The

DRT’s stimuli varied in their modality (visual/auditory), while the tracking task varied

in its workload demand (low/high). DRT performance was modelled using a

shifted-Wald model, while the tracking task was assessed using systems factorial

technology (SFT), a non-parametric methodology capable of capturing a cognitive

system’s workload capacity. To allow the latter’s use, we developed a method of

transforming continuous tracking data into a discrete form akin to response times.

Analysis of DRT data found little evidence that the DRT’s modality affected processing

efficiency, while SFT analysis found limited-capacity processing on the tracking task

across both DRT modalities. These findings suggest DRT modality had little effect on

the level of interference between the two tasks.
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Assessing Cross-Modal Interference in the Detection Response Task

When driving a car, we all know we should keep our hands on the wheel and off

our mobile devices and other distractions. These distractions place extra workload on

the user, drawing resources away from the more important task of driving safely. But

are all distractions made equal? Texting and driving is an obvious risk, as both tasks

demand the focus of the driver’s eyes, but the modern car also places demands on the

driver’s ears, with such features as voice assistant technology. How does multi-tasking

across modalities differ from multi-tasking when both tasks appeal to the same sense?

The current study aims to use mathematical models of participants’ responses to assess

how measures of workload may interfere with user performance, and whether a

multi-modal paradigm limits such interference. This aim is complicated by the

trial-by-trial structure of most psychological experiments, which does not reflect the

continuous nature of real-world tasks such as driving. To this end, our second aim was

to develop and test a new technique for transforming data from a continuous task into a

form that allows the use of these mathematical models.

Background

Multi-tasking has a deleterious effect on performance due to people’s limited

capacity for processing information (Kahneman, 1973). Tasks that require more

resources interfere to a greater extent than others, while automated tasks require no

resources, and therefore have no impact on other tasks (Wickens, 2002). However, a

unitary model of processing capacity where all tasks draw on a single pool of resources

cannot explain findings relating to multi-modal multi-tasking— situations in which

tasks are presented using different sensory modalities (Wickens, 2002).

Treisman and Davies (1973) found that dual-task performance was faster when

the two tasks were presented through different modalities than when they were

presented through the same modality. They theorised that perceptual capacity may

operate at multiple levels—different senses process inputs from different modalities by

peripheral systems, with a single central system processing the information flowing from

the periphery. Navon and Gopher (1979) explained the differential effect of multi-modal
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multi-tasking in terms of multiple resources, whereby separate mechanisms within the

perceptual and processing systems draw on separate resources. This explanation

predicts that a pair of tasks that appeal to the same perceptual system will draw

resources from the same pool, where tasks appealing to separate senses will not.

Wickens (1980), in developing Multiple Resource Theory, identified structural

patterns to dual-task interference within and between modalities. This was manifest in

a four-dimensional model of multiple resources; peripheral systems are responsible for

perceiving and processing stimuli for each modality, therefore the resources used for this

processing are not shared across modalities, whereas responding to stimuli is handled by

a central system with a single resource pool. Multi-modal stimulus perception is

theorised under this model to draw on separate resources from each stimulus modality

at a peripheral level, similarly to Treisman and Davies’ model, as an explanation for the

relatively smaller impact of multi-tasking across modalities (Wickens, 2002). Under this

model, dual-task interference occurs primarily at a central processing level (Bonnel &

Hafter, 1998), as a result of the limited availability of working memory (Wickens, 2002).

Multi-tasking performance may also be limited not by participants’ ability to

perceive stimuli, but by their ability to ignore them. Lavie’s (1995) Perceptual Load

Theory proposed a perceptual mechanism with limited capacity which is responsible for

perceiving all stimuli presented. As this mechanism has a limited capacity, it may be

overloaded under conditions of high perceptual load, or situations where high amounts of

information are presented simultaneously, with new stimuli being missed. This theory

was expanded to include a cognitive control mechanism which is responsible for selective

attention, whereby attention is directed to task-relevant stimuli, and restricted to

exclude irrelevant stimuli (Lavie, Hirst, de Fockert & Viding, 2004). Overloading this

mechanism causes selective attention to break down, and perceptual information to be

processed regardless of its relevance to the task at hand. In multi-tasking situations

with high cognitive and perceptual load, it is theorised that selective attention will fail,

causing interference between tasks due to irrelevant information being processed,

followed by a state of inattentional blindness, where new information is not processed at
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all. In the latter state, distractor interference actually decreases, due to the distracting

stimuli not being perceived.

Theories of perceptual load and cognitive control have been applied to

cross-modal multi-tasking. Multi-sensory integration is negatively affected by increased

perceptual load with performance on both a complex speech integration task and a

simpler multi-sensory detection task decreasing as perceptual load increased (Gibney

et al., 2017). Additionally, increased visual perceptual load in an air traffic control task

had a negative effect on auditory signal detection (Causse, Imbert, Giraudet, Jouffrais

& Tremblay, 2016), suggesting cross-modal task interference. There may therefore be

two components to task interference in multi-tasking—a perceptual component,

whereby two tasks that share a modality will cause greater interference than two tasks

that do not, and a processing component, whereby the participant’s limited capacity to

process and respond to multiple information sources is overloaded, regardless of the

modality of that information.

Detection Response Task

The study of user workload, and the consequences of overloading a user’s limited

capacity, are of relevance to the domain of human machine interaction. Depending on

the manner and time that information is delivered, users may be hindered rather than

helped by information delivery (Haapalainen, Kim, Forlizzi & Dey, 2010). Indeed, some

systems designed to help users, such as hands-free phone interfaces in cars, may

endanger drivers and other road users by placing unnecessary workload on drivers

(Strayer, Cooper, Turrill, Coleman & Hopman, 2017).

The detection response task (DRT) is an objective measure of workload designed

for use in real-world settings such as driving (International Organization for

Standardization, 2016). It is a simple signal detection task that measures residual

capacity, or those resources that are not occupied by other tasks at a given time. This

can be considered a subset of a person’s total capacity (see Table 1 for a glossary of

theoretical and methodological terms). The demands of the task do not change across
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trials, therefore changes in performance on the DRT, defined as mean response time

(RT), hit rate, or lapse rate, indicate changes in the user’s workload state across

different conditions of a primary task—slower responses and lower accuracy indicate less

residual capacity, and hence higher workload, while faster responses and higher

accuracy indicate more residual capacity is available. Its low-profile apparatus allows it

to be used in situations such as driving tasks, where other hardware would not be

practical. Software-based versions of the DRT have also been used, whereby the

methodological specifications of the ISO standard are applied to a computer-based task

(Thorpe, Nesbitt & Eidels, 2019). In an automotive setting, it has been used to assess

the cognitive impact of mobile phone use (Strayer et al., 2015), and in-car conversations

(Tillman, Strayer, Eidels & Heathcote, 2017), and has been used in lab as well as in

highway driving tasks (Hsieh, Seaman & Young, 2015). The DRT has also been

employed in aviation research, to examine the effect of added information in helicopter

flight (Innes, Howard, Eidels & Brown, 2018).

Table 1

Glossary of terms used throughout this text.

Capacity coefficient An estimate of a process’s workload capacity, calculated by comparing hazard rates of

responses across different levels of task demands.

Cross-correlation A method of correlating two time series by time-shifting one time series.

Detection response task A simple signal detection task designed to index a participant’s workload state by meas-

uring residual capacity. Abbreviated as DRT.

Drift rate A parameter of the shifted-Wald model, denoted as v, representing the rate of evidence

accumulation.

Modality The sensory system to which a stimulus is presented.

Non-decision time A parameter of the shifted-Wald model, denoted t0, representing any time spent not

accumulating evidence for a decision.

Pseudo-RT A temporally sensitive variable akin to RT that reflects time taken on a task.

Residual capacity Any cognitive resources not currently dedicated to other cognitive processes.

Shifted-Wald model A single-bound evidence accumulation model that can estimate the drift-rate, threshold

and non-decision time of a single-choice RT task.

Systems factorial technology A non-parametric methodology that can estimate the workload capacity of a cognitive

process by estimating capacity coefficients. Abbreviated as SFT.

Threshold A parameter of the shifted-Wald model, denoted as a, representing how much evidence

is required for a decision-making process to complete.

Workload capacity The efficiency of a process under increased task demands.
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Sequential Sampling Models

The assessment of DRT performance need not be limited to comparisons of mean

RT. Sequential sampling models have been frequently used as a tool to characterize

individuals’ response processes, whereby to make a decision, one accumulates evidence

towards a response threshold (Laming, 1968). The effect of manipulating variables is

not measured by surface-level behaviour such as changes in RT, but rather by changes

in the latent parameters that sequential sampling models estimate, such as the value of

the response threshold and the rate at which the response threshold is approached.

Typically, sequential sampling models investigate choice RTs in terms of evidence

accumulation rate, or the speed with which information is processed, referred to

hereafter as ’v’, which is in turn composed of mean drift rate and variance around that

mean; response threshold, or the amount of evidence required to make a decision,

referred to hereafter as ’a’; starting point, which represents how biased towards a choice

one is at the start of the decision-making process; and non-decision time, generally

defined as the time spent encoding and responding to the stimulus, referred to hereafter

as ’t0’ (Brown & Heathcote, 2008; Leite & Ratcliff, 2010). Variation in each parameter,

or a combination of parameters, could underpin changes in RT, but the rate of evidence

accumulation and response threshold are the parameters most commonly studied in

recent literature related to the DRT. Further details of the models used in the current

study are presented in Appendix A.

Sequential sampling models have been applied to DRT response time data from

automotive studies to assess the effect of in-car conversation while driving on the

driver’s workload state (Tillman et al., 2017), and to assess the effect of performing a

concurrent working memory task while driving (Castro, Strayer, Matzke & Heathcote,

2019). Higher cognitive load has been associated with higher response threshold, and

hence higher caution (Castro et al., 2019; Tillman et al., 2017), with the effect

increasing with time pressure (Palada, Neal, Strayer, Ballard & Heathcote, 2019).

However, there have been mixed results with regard to drift rate. Drift rate represents

the rate of evidence accumulation, and Schmiedek, et al. (2007) found that mean drift
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rate on a choice-RT task was positively correlated with working memory capacity. It is

therefore an intuitive assumption that drift rate corresponds closely to the amount of

cognitive resources available. However, Tillman et al. (2017) did not find lower drift

rate in DRT responses as cognitive load increased. Slower DRT RTs could therefore be

attributed to increased caution, rather than slower information processing as a result of

sharing a limited resource such as working memory (Heathcote et al., 2015). Given this

alternative explanation, as well as the possibility this or other findings are statistical

outliers, it is therefore unclear which model parameters or combinations of parameters

relate to changing levels of cognitive load and further research is required.

A challenge to modelling the DRT is the simple nature of the task itself.

Sequential sampling models such as the drift diffusion model (Ratcliff, 1978) and the

linear ballistic accumulator (Brown & Heathcote, 2008) were devised to assess data from

two-alternative forced choice experiments. Such experiments produce RT and accuracy

data for each of the possible choices participants could make. The DRT, meanwhile, is a

simple detection task. Without an "incorrect" response available, accuracy can only be

considered in terms of hits, late misses, and false alarms. This requires any potential

sampling model to be simpler than traditional models. A single-choice version of the

drift diffusion model has been developed (Ratcliff & Van Dongen, 2011; Schwarz, 1989)

and this model has been applied to DRT RTs (Ratcliff & Strayer, 2014). The Wald

model (Heathcote, 2004) has also been used to model DRT responses as it is suitable for

single-choice tasks (Castro et al., 2019; Palada et al., 2019; Tillman et al., 2017). The

Wald distribution, or Inverse Gaussian distribution, describes the passage of time for

Brownian motion with a positive drift rate towards a positive threshold. The

shifted-Wald model differs from the Wald model, in that it accounts for non-decision

time, or t0, by shifting the response time distribution. In contrast, the Wald model

cannot estimate t0 without adding an independent process. The single-bound drift

diffusion model is not able to differentiate between the effects of drift rate and threshold

or estimate non-decision time under certain restrictions (Ratcliff & Strayer, 2014), and

Palada et al. 2019 found that the linear ballistic accumulator did not perform as well in
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fitting single-choice data as the Wald model. Given the limitations of the LBA and

single-choice drift diffusion models in prior research, the shifted-Wald model therefore

appears to be the most appropriate of the three models to apply to DRT data.

While the DRT presents information about the user’s workload state, it does not

examine the demands of the primary task itself. Given that the DRT only indexes

residual capacity rather than the intrinsic workload demands of the primary task, its

use may not be sufficient to fully understand the participants’ cognitive state. It is

therefore important to consider the properties of the cognitive processes used to

complete the primary task in a dual-task paradigm. Sequential sampling models have

been applied to primary tasks in such paradigms (Palada et al., 2019), but this

approach can only be undertaken when the data from the primary task is discrete, in

the form of RT distributions. Additionally, sequential sampling models require

properties of the RT distributions and their underlying parameters to be estimated or

assumed. One of these issues can be addressed by applying a non-parametric model to

data, which requires no such assumptions. One method for achieving this is through the

application of systems factorial technology.

Systems Factorial Technology

Systems factorial technology (SFT) is a powerful mathematical methodology that

allows the properties of cognitive processes to be examined (Townsend & Nozawa,

1995). Through SFT, empirical data can be compared to benchmark models with given

properties, with the best-matching model giving the best account for the data. As

mentioned above, SFT is non-parametric, and is therefore agnostic to the distributional

properties of the data examined (Houpt, Blaha, McIntire, Havig & Townsend, 2014),

lending the methodology a great deal of versatility. Central to the application of SFT to

experimental data is the redundant target paradigm, an experimental design in which

participants may be presented with a single stimulus to be processed, or a pair of

stimuli, either of which may be processed to complete the task. To take the example of a

simple signal detection task, a single stimulus such as a light or tone would constitute a
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single-target trial, whereas two stimuli conveying the same information would constitute

a double-target trial. By manipulating the presence and salience of these two targets,

the properties of the process in question can be estimated (Townsend & Nozawa, 1995).

Of particular interest in the current study is the property of workload capacity, or

the efficiency of a process under increased task demands (Townsend & Eidels, 2011). As

depicted in Figure 1, a process with limited capacity reduces in efficiency as load

increases, whereas an unlimited-capacity process retains its efficiency across levels of

task load. A process is considered super-capacity if it operates at a greater efficiency

under higher task load. Workload capacity is assessed using the capacity coefficient,

which compares integrated hazard functions from different levels of task load to

estimate an empirical measure of efficiency (Townsend & Eidels, 2011). This function

can be compared to a theoretical benchmark, which represents performance under an

unlimited-capacity, independent and parallel (UCIP) model. Different UCIP models are

associated with different stopping rules (Houpt et al., 2014), but the interpretation of

these models is the same—a capacity coefficient equal to the UCIP model represents an

unlimited-capacity process, while capacity coefficients above or below the UCIP

benchmark represent super- and limited-capacity processes respectively, as depicted in

Figure 2.

SFT can also be used to assess the presence of irrelevant stimuli on a process’s

efficiency. The presence of distractors can have a deleterious effect on a system’s

capacity to process relevant information. As a consequence, if irrelevant stimuli are

present while a participant responds to a single task (the upper half of Figure 1),

performance on this task may be worse than it would be in the absence of irrelevant

stimuli, thereby distorting any capacity coefficients calculated using this data (Little,

Eidels, Fific & Wang, 2015). The presence of distractors in a task does not preclude the

use of SFT to estimate workload capacity—the resilience function can be calculated

similarly to the capacity coefficient, whereby double-target data is compared to

single-target data, but those single targets are assumed to have been presented

alongside distractors (Houpt & Little, 2017; Little, Eidels, Fific & Wang, 2018). An
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Figure 1 . Representations of limited- and unlimited-capacity processes, with pipe

diameter representing resource availability for each channel.

alternative capacity analysis is the single-target self-terminating capacity coefficient,

which compares target processing when the target is presented alone against the same

process in the presence of a non-target stimulus (Blaha, 2011). The UCIP model

associated with this measure assumes that the presence of a non-target does not reduce

the efficiency with which targets are processed. Compared to this benchmark, a

limited-capacity process would be negatively affected by the presence of non-target

stimuli, whereas a super-capacity process would improve its processing efficiency when

non-targets are present. In a dual-task paradigm, it is assumed that only the target

stimulus must be processed before a response can be made (Blaha & Houpt, 2015).

The benchmark model in its "difference" form is defined as

CSTST(t) = KA, X(t) −KA(t)

This model compares the reverse hazard function of the target channel, labeled

’A’, with the reverse hazard function of the target channel in the presence of a

task-irrelevant stimulus, labeled ’X ’. The value of the UCIP benchmark is zero, with

limited capacity performance characterised by a capacity coefficient of less than zero.

Appendix A contains further details of the capacity coefficient and benchmark models.
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Figure 2 . Representations of limited-capacity (a), unlimited-capacity (b) and

super-capacity (c) coefficients compared to the COR(t) benchmark model.

Compatibility Issues and the Current Study

The DRT operates by indexing the effect of another task on the user’s workload

state—it measures the extent to which the primary task impacts on DRT performance.

The prospect of the primary task interfering with DRT performance is therefore

expected. However, it is necessary to consider the potential impact of the DRT on the

primary task. The DRT has not been found to increase participants’ overall perceived

workload (Strayer et al., 2015), though if the effect of the DRT’s presence was small,

participants may not have been sufficiently sensitive to changes in their own workload

state to detect the change between conditions. Such a small impact of the DRT on

primary task performance may be an acceptable cost in exchange for the knowledge

gained from its use. Nevertheless, it would be prudent for researchers to identify and

utilise the least invasive configuration of the DRT for a given experimental paradigm.

Of particular note is the potential impact of presenting the DRT using the same

modality as the primary task. It may be, as has been theorised, that the DRT may

impact primary-task performance less when the two tasks do not share resources

(Bonnel & Hafter, 1998; Treisman & Davies, 1973; Wickens, 1980). However, Wickens

(2008) noted that the predictions of Multiple Resource Theory may not extend to

residual capacity as the latter is measured by the DRT, but only to the state of

overload and the relative extent to which performance fails as a result. If the combined

load of the DRT and primary task is sufficiently low, it may be of no benefit for the two
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tasks to be presented using different modalities.

For the DRT to be well-controlled, the primary task used to impose workload

should be continuous, as opposed to a discrete trial-by-trial task, so as to impose a

consistent level of workload over time. Consider a task traditionally used in cognitive

research, such as a signal detection task. Depending on which phase of a trial a DRT

probe is presented, a participant could be perceiving stimuli, making a response, or

sitting idly in an inter-trial interval. Each of these states could impose different levels of

workload, and hence elicit different levels of performance on the DRT. For this reason,

the DRT has not been used extensively alongside established methods of assessing

workload in cognitive research. Palada et al. (2019) addressed this by presenting a

primary task with a relatively slow required response alongside the DRT, and only

analysing trials that occurred concurrently. Both tasks in this paradigm produced

discrete data appropriate for cognitive modelling, but this approach is limited to tasks

with naturally discrete structure—a continuous task such as driving does not naturally

produce discrete data. SFT is relatively flexible in the form of data to which it can be

applied, but the requirements of its experimental design limit its ecological validity, as

it requires a redundant target paradigm. The ideal primary task for use with the DRT

would be continuous in nature, while the ideal task for the application of SFT would be

a dual task that generates response time distributions. A continuous task that is

compatible with SFT would allow for a more sophisticated understanding of the

workload demands of the task, as well as extending the use of SFT to a novel

application.

The current study aimed to investigate the effect of cognitive load across DRT

stimulus modality, and to identify the least invasive DRT configuration in the context of

a visual task. Beyond comparing DRT performance and group-level main-task

performance, we aimed to apply theoretical models of workload to both the DRT and

the primary task using complementary modelling techniques, to assess the workload

demands of the primary task and the differential effect of interference in single-modal

and multi-modal multi-tasking in both tasks. It was predicted that participants would
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exhibit faster and more accurate performance on both tasks when the DRT was

presented using a different modality to the primary task, and slower, less accurate

performance when the two tasks shared the visual modality. It was further predicted

that processing efficiency in both tasks would decrease under high primary task load.

Method

Participants

Fifty undergraduates from the University of Newcastle (F=25, M=25)

participated in the study. Mean age of participants was 22.4 years (SD=5.6 years).

Participants were remunerated with course credit. The study was approved by the

University of Newcastle Human Research Ethics Committee.

Design

The task had two independent variables: primary task load, which was

manipulated by changing the number of targets to be tracked and had three levels

(High load - two targets to track simultaneously, LowLEFT - track only one moving

target, on the left side, and LowRIGHT - track only the right target), and DRT salience,

which had three levels (high/low/absent), resulting in a 3x3 factorial within-subjects

design. Figure 3 depicts the stimuli presented in the primary task—the yellow boxes are

the targets to be tracked, and the black horizontal lines are the needles, or the objects

that participants controlled. The dependent variable for the primary task was tracking

error, defined as the absolute distance between the needle and the centre of the

corresponding target at any point in time, measured in degrees of viewing angle as

calculated from the participants’ sitting distance. The dependent variables measured

with the secondary DRT, when it was present, were mean response time (RT) and hit

rate defined as the proportion of positive responses to presented stimuli. A

between-subjects factor of DRT modality was also used, with half of the participants

presented with a visual stimulus, and the other half presented with an auditory

stimulus. DRT modality was presented as a between-subjects factor to mitigate
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participant fatigue as an equivalent experiment with all factors presented

within-subjects would have taken around three hours to complete.

Figure 3 . Example stimulus screen with tracking task gauges (left and right) and DRT

stimulus (centre). Each gauge is composed of a target (yellow square with red centre

line), response needle (black horizontal line) and target bounds (black rectangle).

Apparatus & Stimuli

Figure 3 shows an example screen from the task. Two gauges were presented, each

subtending 5 degrees of viewing angle from bottom to top at a sitting distance of 80cm.

The total viewing area of stimuli for both gauges and the secondary task was 5x5

degrees of viewing angle. Both gauges were presented whether or not they were to be

attended to. Each gauge featured a target to be tracked, depicted in Figure 3 as the red

horizontal line in the centre of the yellow box, which moved at a constant rate towards

randomly-chosen destinations on the gauge. Upon reaching a destination, it would

immediately begin moving towards a newly sampled destination. If the new destination

required the target to continue moving in the same direction, the target’s behaviour

would not appear to change. Otherwise, the target would change direction to reach the

new destination. Each gauge also featured a tracking needle, to be used by the

participant to track the corresponding target. These needles were controlled using a

computer keyboard, with the ’a’ and ’z’ keys moving the left needle up and down, while
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the apostrophe and forward-slash keys moved the right needle up and down. When the

response key was released, the needle would come to rest.

The DRT stimulus was presented as either a visual or auditory stimulus. The

visual stimulus was a red circle around the fixation cross, while the auditory stimulus

was a 2000Hz sine wave. As seen in Figure 4, the salience of the visual stimulus was

manipulated by reducing the contrast between the stimulus and the background colour

to 5% in the low salience condition, while the amplitude of the auditory stimulus as

produced by the experiment’s software was reduced to 5% in the low salience condition.

The DRT stimulus was presented for a duration of 1,000ms, at random intervals

between 3,000-5,000ms from the end of the previous trial. A trial began when the

stimulus was presented, and ended either when the participant responded, or after

2,500ms from presentation. A trial was considered a ’hit’ when the participant

responded within this 2,500ms window, and a ’miss’ if the participant did not respond.

A response was recorded as a false alarm if it was made outside the 2,500ms response

window. Participants responded to the DRT stimulus using a PCsensor FS1-P USB

footswitch.

Figure 4 . High and low salience DRT visual stimuli.

The task was computer-based, coded using Psychopy v1.90.3 and presented at a

60Hz refresh rate on a Dell S2240Lc LCD monitor, with a screen width of 53cm and

1920x1080 resolution. Audio stimuli were presented using Sennheiser HD-201

headphones.



CROSS-MODAL INTERFERENCE IN DRT 17

Procedure

Participants were asked to report their age, dominant hand, English language

proficiency, and visual and aural acuity. They were seated in a quiet room and

positioned in front of the testing monitor, at a distance of 80cm. The footswitch used to

respond to the DRT was placed beneath the participant’s dominant foot. If the DRT

stimulus was auditory, participants were fitted with headphones and presented with

both high- and low-salience stimuli to ensure they could hear both tones. Participants

completed an interactive instruction phase, in which the tasks were explained.

Participants were not directed to give a higher priority to either task, but to complete

both tasks to the best of their ability. They then completed a 30-second practice trial,

before completing the experimental phase.

The main experiment was presented in three sections, with one section per level of

DRT presence and salience. The order of the three DRT salience conditions was

counterbalanced across participants. In each section, fifteen trials were presented, each

of which lasted 60 seconds. Each of the three load condition was presented for five

trials, with instructions for which gauge(s) to attend being presented at the beginning

of each trial. Upon completing a trial, participants were required to wait for 15 seconds

before continuing, to prevent fatigue. After completing each section, participants were

asked to wait for 60 seconds before completing the next section. The experiment took

approximately 90 minutes to complete. Upon completion, participants were debriefed.

Data Analysis

DRT performance was assessed both by comparing mean RT and hit rate by

condition, and by modelling DRT responses. To assess the workload capacity demands

of the primary task, we intended to estimate capacity coefficients from primary task

data. This analysis traditionally uses RT distributions, a discrete data form, for its

calculations. As well as estimating capacity coefficients from distributions of tracking

error, we aimed to transform the continuous tracking error data to a discrete form. To

this end, we used two methods to derive discrete data from the tracking error time
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series—cross-correlation between the target and response time series, and a novel

method of deriving distributions of pseudo-response times.

Cross-Correlation. We used cross-correlation to generate a time-based measure

of performance by comparing target movement data to response movement data (Heath,

2000). Given the response time series in a given experimental block is the participant’s

reaction to the target time series in the same block (in the current study, the needle

moves in response to the target), the former time series can be shifted forwards in time

to find the time lag at which the two time series best correlate. The extent to which the

time series needs to be shifted reflects the latency of the participant’s response. Figure 5

shows how two time series can be cross-correlated by shifting one time series—the left

panel represents raw time series data, while the right panel represents the time series

shifted to best correlate. The number of lags that produces the best correlation can

then be multiplied by the resolution of the data (in the current study, the sample rate

of the display), producing a value that represents the time the participant took to

respond to the target on average. By doing so, we produced discrete RT data from a

continuous task, which could then be compared to continuous results.

Figure 5 . Example cross-correlation, showing raw time series data (left) and data where

the response times series was time-shifted to the point of best correlation (right).

Pseudo-RT Distributions. The left panel of Figure 6 depicts the stimuli

participants were asked to track. The yellow box around each target was included as a
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guide, but for the purpose of data transformation its limits were defined as the limits of

acceptable performance - when the participants’ needles were within this box, which

subtended 0.5°on either side of the target, they were deemed to be performing the task

to an acceptable degree. When tracking error exceeded this error threshold, an "error"

event began, which ended when the needle returned to within the acceptable

performance limits. The right panel of Figure 6 depicts an example time series of

tracking error, with the threshold of acceptable performance represented by the dotted

line. The time between an error event beginning, represented in Figure 6 as the point

the time series crosses above the threshold, and the end of this error event, represented

as the point the time series returns below the threshold, was treated as a

pseudo-response time. The red lines in Figure 6 represent the length of each pseudo-RT.

Pseudo-RT distributions for each load condition were calculated using this method.

Figure 6 . Tracking task stimuli, with the limits of acceptable performance used for

pseudo-RT transformation (left), and example tracking error time series with threshold

of acceptable performance represented by the dotted line (right). The length of each

error event (red lines) represents the length of each pseudo-RT.

Results

Seven participants were excluded due to technical malfunction, low DRT accuracy

(<33% overall hit rate), and non-responses to primary tracking task trials.
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DRT

To address the issues of whether the software-based DRT was sensitive to load,

and whether DRT modality and salience affected DRT responses, mean response times

(RT) and hit rates (HR) were compared using repeated-measures ANOVA and Bayesian

repeated-measures ANOVA. Bayesian tests were applied only in cases of non-significant

or ambiguous results, to present evidence in favour of no difference; this cannot be

achieved using frequentist tests alone. The reported Bayes Factors are Inclusion Bayes

Factors, which reflect the strength of evidence in favour of including a factor in an

explanatory model of the data. Unlike the more commonly used BF 10, which compares

the effect of a factor to a null model, the BF Inclusion takes into account the relative

likelihood of other factors having an effect on the data. However, these Bayes Factors

can be interpreted the same as BF 10, according to the classification scheme presented

by Lee and Wagenmakers (2014), from Jeffreys (1961). Effect sizes were interpreted

according to Cohen’s (1988) conventions.

A main effect of primary tracking task load on DRT RT was found. As the left

panel of Figure 7 shows, when primary tracking task load was high, mean RT was

slower (M=585ms, SD=138ms) than when load was low (M=506ms, SD=98ms), F(1,

41)=29.25, p<.001, η2=.10. This effect size was moderate, but consistent for both the

visual DRT condition, F(1, 22)=32.90, p<.001, η2=.17, and the auditory DRT

condition, F(1, 19)=8.47, p=.009, η2=.08. The same main effect was found for mean

HR. Under high load conditions, participants responded to fewer probes (M=95%,

SD=7%) than under low load (M=97%, SD=7%), F(1, 41)=4.33, p=.044, η2=.01.

When separating data by DRT modality, this small main effect was only found for the

auditory DRT condition, F(1, 19)=5.05, p=.037, η2=.03. In light of this, Bayesian

analysis was carried out, which indicated ambiguous evidence against including primary

tracking task load in an explanatory model of the data, BF Inclusion=0.55. Figure 7 also

shows the main effect of DRT modality on mean RT in the left panel. Participants who

were presented auditory DRT stimuli responded faster (M=512ms, SD=145ms) than

those who were presented visual stimuli (M=579ms, SD=97ms), F(1, 41)=5.38,



CROSS-MODAL INTERFERENCE IN DRT 21

p=.025, η2=.12. No significant interaction between primary tracking task load and DRT

modality was found.

Figure 7 . Mean response times to DRT across primary tracking task load (left),

stimulus salience (right) and DRT modality. Error bars represent one standard

deviation.

The salience of the DRT stimulus also affected DRT performance. Participants

responded faster to high salience stimuli (M=525ms, SD=120ms) than to low salience

stimuli (M=566ms, SD=120ms), F(1, 41)=12.61, p<.001, η2=.03. The right panel of

Figure 7 shows this small effect. Participants who were presented auditory stimuli were

faster to respond to high salience stimuli (M=489ms, SD=146ms) than to low salience

stimuli (M=535ms, SD=142ms), F(1, 19)=6.65, p=.018, η2=.03. Participants in the

visual group were also faster to respond to high salience stimuli (M=561ms,

SD=101ms) than to low salience stimuli, (M=596ms, SD=90ms), F(1, 22)=5.78,

p=.025, η2=.03. No significant differences were found in mean HR between DRT

modality or salience conditions. Bayesian analysis presented ambiguous evidence in

favour of including salience as an explanatory factor, BF Inclusion=1.31, and weak

evidence against including modality, BF Inclusion=0.27. These findings constitute

evidence in favour of the hypothesis that DRT modality and salience affect DRT mean

RT, but mixed evidence regarding the effect of primary tracking task load and salience

on HR, and evidence against modality affecting HR.

DRT Model. Following this initial analysis, we fit a shifted-Wald model to the

data using the JAGS module developed by Steingroever, Wabersich and Wagenmakers
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(2018). Similar to previous studies that applied this model to DRT data (Castro et al.,

2019; Palada et al., 2019; Tillman et al., 2017), we fit a single-bound model to response

time data from the DRT to investigate the latent processes contributing to the response

trends discussed above.

We separately fit 8 single bound diffusion models to the DRT data. The 8 models

represented the full parameter space where DRT modality and primary tracking task

load—i.e. one or two stimuli to track—were able to vary for the 7 combinations of

parameters. We also fit a null model with no variability (i.e. three group-level

parameters which did not vary with modality or primary tracking task load). Table 2

provides a comparison of the deviance information criterion (DIC) values for each

model, which shows that the full model, which allowed a, v and t0 to vary, had the best

fit to the data. This model assumed that a and v and t0 varied with modality and

primary tracking task load, so that individual parameters were drawn from unique

group distributions. As Table 2 shows, this model had the most effective parameters, a

value which represents the sum of all free parameters in the model across the individual

and group-level data sets. Nevertheless, its low DIC value indicated it was the winning

model. Additionally, we opted not to include salience effects as a factor in the model as

we showed there was no evidence to suggest a change in responding between low and

high salience stimuli. To ensure we had not overlooked this as a confounding variable in

the model, we fit the winning model to the low salience and high salience data

separately and found no evidence of a parameter shift between these conditions.

The winning model shows that primary tracking task load had a clear effect on

the rate of evidence processing, the decision threshold and the non-decision time.

Furthermore, it appears that modality of the DRT stimulus also affected response

patterns. Figure 8 shows the posterior distributions for the model parameters. To assess

between-groups effects, we compared the posterior parameter distributions for each

modality condition. The p-values below represent the probability that the difference

between posterior parameter distributions was less than or equal to 0. Thresholds were

comparable across load and modality conditions, with the only difference shown
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Table 2

DIC values for each model variant. The winning

model is in bold.

DIC Value Effective Parametersa

a+ v + t0 -21386 283

a+ v -21139 236

a+ t0 -21034 236

v + t0 -21202 236

a -20753 189

v -21118 189

t0 -20525 189

Null -20130 142
a "Effective parameters" represent the sum of all free

parameters in the model across individual and

group-level data sets.

between the auditory and visual conditions when under low workload (low visual-high

visual; p=.599, low auditory-high auditory; p=.919, high visual-high auditory; p=.104,

low visual-low auditory; p=.001). There were some differences observed across rates of

evidence accumulation, especially across workload conditions (high visual-low visual;

p=.057, high auditory-low auditory; p=.001, high visual-high auditory; p=.503, low

visual-low auditory; p=.297). There were comparable estimates of non-decision time

across all conditions, with the exception of the difference between modalities in the low

workload condition (low visual-high visual; p=.768, low auditory-high auditory; p=.311,

high visual-high auditory; p=.591, low auditory-low visual; p=.041).
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Figure 8 . Posterior distributions of threshold, drift rate and non-decision time across

DRT modality and primary tracking task load.

There is a clear effect of primary tracking task load on rate across modalities, with

higher task load seeming to reduce the rate of evidence accumulation. This is in line

with previous research, which similarly showed large differences in drift as a result of

task load manipulations (Castro et al., 2019; Tillman et al., 2017). In addition to this,

the interaction effect shows that this difference is greater in the auditory channel, with

a more marked decrease in drift rate observed in the high load condition. An effect of

modality is shown, with the auditory group setting higher thresholds than the visual

stimulus group. This suggests that participants in the auditory condition were more

cautious than those in the visual condition.

Primary Tracking Task

Task Trade-off. The DRT can be considered an index of residual capacity,

when taken in the context of primary tracking task performance. However, the finding

that DRT performance was slower or less accurate under high primary task load does

not necessarily imply lower residual capacity. An alternative explanation is that

participants traded off between the two tasks, deliberately allocating resources from the

DRT to the primary tracking task. In this scenario, resources would still be shared

between the two tasks, but changes in DRT performance could not be taken as a
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reliable indicator of changes in the user’s workload state. If this was the case, we would

expect to see primary tracking task performance improve, or at least not decrease,

under high load conditions. To address this question, primary task tracking error was

analysed using repeated-measures ANOVA.

As the left panel of Figure 9 shows, mean tracking error was found to be higher

when primary tracking task load was high (M=0.53°, SD=0.18°) than when task load

was low (M=0.31°, SD=0.08°), F(1, 41)=141.33, p<.001, η2=.39. This pattern of

results suggests participants were not trading off between tasks, as performance was

worse on both tasks under high primary tracking task load than under low load.

Figure 9 . Mean tracking error across primary tracking task load (left) and DRT

salience conditions (right).

DRT Interference on Primary Tracking Task. The questions of whether

the presence of the DRT interfered with primary tracking task performance, and what

differential effect the DRT’s modality and salience had on primary tracking task

performance, were addressed by comparing primary task tracking error using

repeated-measures ANOVA and Bayesian repeated-measures ANOVA.

As the right panel of Figure 9 shows, mean tracking error was affected by the

salience of the DRT stimulus, F(2, 82)=9.50, p<.001, η2<.01. In light of a very small

main effect size, post-hoc contrasts were carried out which showed that conditions in

which the DRT was present (DRT-High and DRT-Low) had significantly higher mean

tracking error (M=0.43°, SD=0.18°) than conditions in which the DRT was not

presented (M=0.40°, SD=0.17), t(42)=4.37, p<.001. However, the contrast of the two
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DRT-present conditions indicated no significant difference between mean tracking error

when the DRT stimulus was high-salience (M=0.43°, SD=0.18) and when the DRT

stimulus was low-salience (M=0.43, SD=0.18), t(42)=0.17, p=.863. Bayesian analysis

only offers ambiguous evidence for whether the factor of DRT salience should be

included in an explanatory model of the data, BF Inclusion=1.28. These findings suggest

the main effect of DRT salience on mean tracking error was driven by the presence of

the DRT stimulus, rather than its salience.

Mean tracking error of participants who were presented auditory DRT stimuli was

not significantly different to those who were presented visual DRT stimuli, F(1,

41)=0.31, p=.58, η2<.01. Bayesian analysis indicated some evidence against the

hypothesis that the factor of modality, depicted as the two lines in Figure 9, should be

included in an explanatory model, BF Inclusion=0.47. This finding is consistent with the

hypothesis that DRT stimuli from different modalities do not interfere with the primary

tracking task to different degrees.

Figure 10 . Capacity coefficients for participants from visual (a) and auditory (b)

modalities, and capacity Z-scores (c).

Workload Capacity. Tracking error distributions from the single- and

double-target conditions were compared at the participant level using the single-target

self-terminating benchmark model, which assumes processing efficiency is unaffected by
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the presence of a distractor or second task. The difference form of the capacity

coefficient is used below as this form allows for significance testing of the capacity

coefficient against the UCIP benchmark (Houpt & Townsend, 2012).

Capacity coefficients were calculated for each participant, but for the sake of

illustrating group-level trends, we also aggregated data from each DRT modality group

into a single super-participant, and calculated capacity coefficients for the two aggregate

data sets. Figure 10a and 10b show the resulting capacity coefficients from these

analyses. Individual capacity coefficients are also presented alongside the

super-participant for each group, to illustrate within-group variance.

At no point did any capacity coefficients exceed the UCIP benchmark, depicted in

Figure 10 as the dashed line, indicating a limited-capacity system. This pattern was

consistent across both modalities, and for all individual capacity coefficients as well as

both super-participants. To supplement this analysis, significance testing on individual

capacity coefficients was carried out using Houpt, et al.’s (2014) SFT package in R. This

test assesses whether any difference between the capacity coefficient function and the

UCIP benchmark is significantly different to zero. In all cases across both modalities,

capacity coefficients were significantly below the UCIP benchmark. The distributions of

z-scores from these tests are presented in Figure 10c, which shows that all participants

from both modalities showed highly significant capacity limitations.

It should be noted that, because tracking error was sampled at 60 data points per

second across several minutes of testing for each condition, the resulting data sets were

very large compared to those collected in traditional SFT studies. We would therefore

expect any significance testing to return a highly significant result, due simply to the

number of observations. The magnitude of the z-scores in Figure 10c reflect the high

significance of the statistical tests, rather than an effect size. These results should

therefore be considered in terms of the trends depicted by the capacity coefficients in

Figure 10a and 10b, their consistency across participants and modalities, and our

confidence in these trends as a result of significance testing.

Cross-Correlation. Primary tracking task performance was also assessed based
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on cross-correlated response times as described in the Method section. Time series of

target direction changes were cross-correlated with equivalent response needle direction

changes. Direction changes were used for the cross-correlation rather than raw time

series data as the latter were auto-correlated. Cross-correlation times below zero were

removed as the relevant relationship was the extent to which target direction changes

predicted responses, not the reverse. Cross-correlation times greater than ten seconds

were also removed as the time distance was deemed too great to be meaningful.

Group-level analysis was then carried out across load and salience conditions.

As the left panel of Figure 11 shows, mean cross-correlated RT was significantly

slower under high load (M=709ms, SD=343ms) than under low load (M=446ms,

SD=53ms), F(1, 41)=28.36, p<.001, η2=.13. However unlike the tracking error data, a

small main effect of salience was found in this data set, F(2, 82)=3.80, p=.026, η2=.02,

though Bayesian analysis presented ambiguous evidence against including salience as an

explanatory factor, BF Inclusion=0.78.

As the right panel of Figure 11 shows, the significant contrast between

DRT-present and DRT-absent conditions that was present in the tracking error data

was not found here, though it approached significance, t(42)=1.86. p=.067. As before,

no significant difference was found between high-salience and low-salience conditions,

t(42)=1.646, p=.322, BF 10=0.43. No significant effect of DRT modality was found,

F(1, 41)=0.52, p=.477, η2=.01 with Bayesian analysis presenting some evidence against

including DRT modality as a factor, BF Inclusion=0.25. This pattern of results was

similar to that found in the tracking error data, though the strength of these findings

was lower, perhaps due to the relatively small data set used when compared to the very

large tracking error data set.

Pseudo-RT Analysis. The capacity analysis above was carried out using the

distributions of tracking error as substitutes for RT distributions. An issue with this

analysis is that capacity coefficients have previously only been estimated from RT

distributions, rather than continuous data sets. To address this, we derived pseudo-RT

distributions as described in the Method section, and estimated capacity coefficients
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Figure 11 . Mean cross-correlation RT across primary tracking task load (left) and DRT

salience conditions (right).

from these discrete distributions.

Before applying a capacity analysis to the pseudo-RT distributions, a group-level

analysis of means was carried out, to assess whether the pseudo-RTs exhibited a similar

trend of results as the tracking error data. As with tracking error, mean RT was

significantly slower under high load (M=1016ms, SD=355ms) than under low load

(M=594ms, SD=156ms), F(1, 41)=121.89, p<.001, η2=.37. As Figure 12 shows, the

trend seen in the tracking error data was replicated; the only significant difference

observed was between conditions in which the DRT was present (M=816ms,

SD=350ms) and conditions in which it was absent (M=784ms, SD=338ms),

t(42)=2.32, p=.023. No significant difference was found between high-salience

(M=810ms, SD=351ms) and low-salience conditions (M=822ms, SD=351ms),

t(42)=0.75, p=.453, and Bayesian analysis presented evidence against salience as a

factor in an explanatory model, BF Inclusion=0.12. Additionally, no significant difference

between DRT modality groups was found, with Bayesian analysis presenting evidence

against including DRT modality as a factor, BF Inclusion=0.45. These results suggest the

pseudo-RT data reflects similar trends to the tracking error data from which it was

derived, although the strength of these findings was lower than with the tracking error

data, as reflected in the higher p-values.

The workload capacity analysis outlined above was repeated using the derived

pseudo-RT distributions, with results presented in Figure 13. These results suggest a
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Figure 12 . Mean pseudo-RT across primary tracking task load (left) and DRT salience

conditions (right).

limited-capacity process, similar to the tracking error data. However, the individual

capacity coefficients are more variable in their spread around the super-participant

coefficient, particularly in the left and right tails of the coefficients. This, along with the

capacity z-scores being closer to zero, reflect the smaller number of data points used in

this analysis relative to the very large tracking error data sets. Nevertheless, this

pattern of results suggests that the pseudo-RT distributions produced capacity results

consistent with the tracking error data—using the same analytic tools, we come to the

same conclusion of limited capacity using both data sets.

Discussion

The DRT produced results in line with those expected from previous studies, with

faster responses under conditions of low load than high load. The result of faster

responses to high-salience stimuli compared to low-salience stimuli was also predicted.

The primary finding from mean DRT RT was that participants who were presented an

auditory signal responded faster than those who were presented a visual signal. This

could be a result of the auditory pathway generally producing faster RTs than the

visual pathway (Green & Gierke, 1984). Another potential explanation is the split of

resources theorised under Multiple Resource Theory—the auditory DRT stimulus may

have drawn upon a different resource than the visual primary tracking task, whereas in

the visual condition both tasks drew from the same pool of resources.

Although participants responded to auditory DRT probes faster than visual
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Figure 13 . Capacity coefficients for visual DRT (a) and auditory DRT groups (b)

derived from pseudo-RT distributions, with capacity z-score distributions (c).

probes, there was no significant difference in the level of interference from the DRT on

the primary tracking task when the DRT’s modality was manipulated. This is in

contrast with the prediction that presenting two tasks using the same modality causes

greater interference than presenting tasks using different modalities. These findings,

when taken together, suggest it is the mere presence of a secondary task, rather than its

salience or modality, that drives the interference effect. It is intuitive that the DRT

causes some interference; for the DRT to measure residual capacity it must place some

workload on the user, if only a relatively small amount. It is surprising, however, that a

lower-salience stimulus did not impose a higher workload on users than a high-salience

stimulus. This may be because the difference in workload between perceiving stimuli of

different salience is too small to have a differential effect on the primary tracking task,

which places a relatively high load on the user. It may also be that the difference

between the salience conditions was not sufficient to produce the effect, and stimuli

with more marked salience differences may be necessary. It was similarly surprising that

a DRT stimulus presented in the same modality as the primary tracking task did not

interfere more than a stimulus presented in a different modality to the primary tracking

task. As with salience, it may be that the differential interference effect, if it existed,
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was too small to have an effect on primary tracking task performance.

The use of a continuous variable, in this case tracking error, in place of RT in a

capacity analysis was novel, as was the use of converted pseudo-RT distributions in the

same analysis. Both the tracking error and pseudo-RT data produced limited-capacity

coefficients across all participants. Capacity z-scores derived from the tracking error

series were markedly higher in magnitude than those derived from pseudo-RT, not

because the effect was greater for the former data set, but because the relative richness

of the data set increased the magnitude of the difference between the conditions relative

to the within-group variance. As mentioned in the Results section, this difference

between measures should not be taken as a sign of increased power in one than the

other. Nevertheless, the distributions of capacity z-scores across DRT modalities within

a measure can be compared, at least visually, with no visible difference between the

groups on either measure. This suggests a relatively stable capacity limitation, whether

in the presence of an auditory or visual DRT.

We can only be confident in our findings if we are also confident that a capacity

analysis of pseudo-RTs is sensitive to processes with different workload capacity. To

address this, we simulated pseudo-RT data to represent limited-, unlimited-, and

super-capacity processes. We found that capacity coefficients estimated from these

simulated data sets correctly identified the workload capacity of each set (see Appendix

B for details of simulation and findings).

The results from our capacity analysis suggest the concurrent tracking of the two

moving targets resulted in interference between the two channels. This may be an

obvious conclusion based on mean tracking error on the primary task increasing under

high load, but a decrement in performance on the double-target condition does not

necessarily imply the channels processing the targets are not operating independently

and in parallel, as discussed in the Introduction. However, given the UCIP benchmark

for the single-target self-terminating model assumes no decrement in processing

efficiency in the presence of a distractor, it is safe to conclude performance in the

current study was at best limited-capacity, if not severely limited. Overall, our analysis



CROSS-MODAL INTERFERENCE IN DRT 33

suggests interference between the two channels. Given that both parts of the primary

tracking task were identical and hence both visual, it is theorised under Multiple

Resource Theory that the tasks would interfere with one another, both at the peripheral

perceptual level, and the central response level.

The finding of capacity limitation from our analysis of primary tracking task data

corresponds to the primary finding of the DRT response time modelling, which showed

drift rate was heavily affected by task load. This is an unsurprising finding, as the

DRT’s sensitivity to interference from other tasks is the central premise of the measure.

This effect was stable across modality, suggesting multi-modal multi-tasking was not

more efficient than multi-tasking within the same modality. Indeed, response thresholds

were generally higher in the auditory group, suggesting greater caution as a result of

multi-modal multi-tasking. The drop in thresholds under high load suggests participants

dealt with the effect of task load by becoming less cautious in their responses to the

DRT. These two parameters alone did not provide the best account for the data, so

non-decision time was included in the model. However, non-decision time was poorly

estimated, so findings regarding non-decision time should be regarded with caution.

The winning model generally provided a good fit of the data, but the model

overestimated RTs in the 90th quantile. This was a result of the model failing to

account for go-failure in the empirical data, where the accumulation process does not

start as expected. Responses longer than 2,500ms were recorded as late misses in the

empirical data, but no such limitation was placed on data generated by the model. This

resulted in a very small number of generated RTs that were much slower than any

empirical data points, which in turn resulted in more substantial right tails being

predicted by the model.

In the current study, the most complex model was chosen as the winning model,

similar to Castro et al.’s (2019) study. Our finding that DRT drift rate was affected by

task load is in contrast to Tillman et al.’s (2017) finding, but otherwise in line with

other findings from modelling studies. A point of divergence from the literature came in

our finding that response threshold did not increase with task load. In other studies,
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threshold was either found to vary with task load (Castro et al., 2019; Tillman et al.,

2017), or it was not included in the winning model for DRT responses (Palada et al.,

2019). This difference could be explained by the demands of the primary task. Palada

et al. (2019) found that the effect of task load on both response threshold and

non-decision time interacted with the response deadline of the primary task, with a

more urgent primary-task deadline resulting in DRT response threshold remaining

constant across load conditions. A continuous task with a constant response pressure

may have a similar effect, though this is not supported by Castro, et al.’s (2019) finding,

which used a similar one-dimensional tracking task as the primary task. More generally,

the current results did not support Multiple Resources Theory. One would expect to

see lower drift rates for the visual group, as both the DRT and primary tracking task

drew from the same peripheral resource. This was not found, though there was greater

variance in the drift rate parameter estimates for visual-group participants than for

auditory-group participants. The only finding that suggests multi-modal multi-tasking

carried some advantage over dual visual tasks came from non-decision time, which was

lower for the auditory group. Again, this is not predicted by Multiple Resource Theory,

which theorises that resources for executing responses are central, and therefore should

not be different across modalities (Wickens, 2002). However as noted above, our

findings related to non-decision should be treated with some degree of caution.

Perceptual Load Theory predicts task interference as a result of task complexity

and high perceptual load, without making specific predictions about the modality of

stimuli (Lavie, 1995). It could therefore explain the effect of increased primary tracking

task load, both on primary tracking task and DRT performance, while also accounting

for the relatively uniform interference effect from the DRT on primary tracking task

performance. If the cognitive demand of attending to both the primary tracking task

and the DRT has a similar impact on the cognitive control mechanism regardless of

DRT stimulus modality, then interference effects could manifest in a similar way, as we

saw in our findings.
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Considerations

The conversion of tracking error to pseudo-RT distributions allowed for the use of

SFT, but the manner in which these pseudo-RTs were derived was somewhat arbitrary.

The threshold for ’acceptable’ performance was meaningful to the task, as it had been

explicitly depicted by the stimulus; there was a perceptual difference between the needle

being within the bounds of the target box, and hence within the ’acceptable’ threshold,

and the needle being outside these bounds. However, participants were not given any

instructions regarding the threshold, so what participants deemed acceptable

performance may not have matched the threshold chosen. Indeed, choosing a different

threshold of acceptable performance was possible, if not as meaningful to the current

task. If participants did not attempt to track the target as closely as possible, but

rather considered a different proximity to the target to be ’acceptable’, capacity

estimates would change for different threshold values. To investigate this possibility, we

collected pseudo-RT distributions from multiple thresholds, from 0.2°to 1.0°, and used

these distributions for the capacity analysis outlined in the Results section alongside the

original threshold of 0.5°. Figure 14 shows the distributions of capacity z-scores for

these threshold values. This analysis indicates capacity estimates were stable across

different threshold values. There were subtle differences between the distributions at

lower threshold values, though capacity estimates remained limited. The most marked

difference was between lower values and the two highest values, 0.9°and 1.0°. This is

not necessarily a limitation of the method used; if one distribution contains a higher

proportion of fast RTs than another, then truncating the left tail of that distribution

would selectively affect the fast distribution, leading to more homogeneous distributions

and therefore changing the outcome of any comparison between the two distributions.

The trend of limited capacity was also apparent with these more lenient thresholds,

though to a lesser extent compared to more strict thresholds. Nevertheless, this suggests

that the choice of threshold value has some effect on the outcome of the analysis. For

this method of data conversion to be valid, the threshold value should at least be

meaningful to the task, so as to reflect a threshold that the participants may have
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perceived.

Figure 14 . Capacity z-score distributions for multiple threshold values. Original

threshold value used for the analysis was 0.5°(encircled), determined by the size of the

target stimulus.

Another issue relating to the size of the target threshold of acceptable

performance is that changing the size of the threshold also changes the number of

observations gathered. Consider an experimental block in which the participant

maintains ’acceptable’ performance, as defined by an overly generous threshold, for the

entire block. This block would not produce any pseudo-RTs, as the needle would not

travel outside the threshold at any time. Indeed, one individual who exhibits higher

overall performance than another individual would necessarily produce fewer

pseudo-RTs over the same amount of participation time. A paucity of pseudo-RT data

represents an issue with this transformation technique, though capacity coefficients

estimated from smaller data sets may still recover the underlying workload capacity of a

system (see Appendix C). Two solutions to this issue are readily available. First, a

researcher could pre-test several thresholds of acceptable performance while developing
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a task, to identify an optimal value which renders the task difficult enough to produce

pseudo-RTs, while also addressing the issue of truncating distributions discussed above.

A second solution would be to simply ensure that experimental sessions run long enough

to produce sufficient data. Given that participant fatigue is a common issue, and one

that factored into the current study’s design, this may present its own issues in practice.

A limitation of the current study’s design was that no psycho-physical pretesting

was carried out to establish the levels of salience to be used in the main experiments.

The decision to limit the low-salience DRT stimulus to 5% of the high-salience stimulus

on a single parameter—colour contrast for the visual stimuli and amplitude for the

auditory stimuli—was arbitrary, with the goal of merely being sufficiently extreme to

elicit a salience effect. It may be the case that our manipulation did not reduce the

salience of the stimulus as much as expected, resulting in the unexpected lack of

differential interference on the primary tracking task. This could be controlled in future

research by using a photometer and decibel reader to ensure stimulus levels are

controlled. Additionally, stimuli in both modality conditions were reduced by the same

relative amount—95%—which assumes that auditory and visual perception are equally

sensitive to changes in stimulus intensity. This issue could be addressed by carrying out

psycho-physical pretesting to ascertain which salience levels should be used.

Although the current study utilised the capacity coefficient, this is not the only

analysis that was available under the SFT framework. The effect of task-irrelevant

stimuli being presented alongside targets could be measured using the resilience

function (Houpt & Little, 2017). As described in the Introduction, this measure is

similar to the capacity coefficient in that it compares double-target performance to

equivalent single-target performance, but differs in that it utilises single-target trials

that are presented alongside distractors. It therefore predicts a different benchmark

model to the capacity coefficient, as it takes into account the resources required to

process distractors. As with other measures within the SFT framework, processes with

different architectures, stopping rules and capacity limitations produce different

resilience functions, which can be compared to empirical data to identify a given
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process’s properties. Unlike the capacity coefficient, some inferences can be made

regarding architecture and stopping rule without the need to manipulate the salience of

stimuli. However, multiple combinations of architecture and stopping rule predict the

same resilience function, and can therefore only be differentiated using a full

double-factorial design (Fific & Little, 2017; Houpt & Little, 2017). As the current

study did not contain a salience manipulation for the primary tracking task, there

would be no way to assess the relative strength of non-target signals, so findings from

this method could have been ambiguous. Additionally, the resilience function, like

COR(t) and CAND(t) forms of the capacity coefficient, assume a system whereby two

input channels feed a single response. Although participants may process these two

channels independently, they only provide one response to these two channels. By

contrast, the current study required independent responses for each channel (tracking

the left vs right gauge), where a response can only relate to a specific input channel.

This is a subtle distinction, but it implies the two channels are not truly redundant, but

rather more akin to a dual-task paradigm. The CSTST(t) form of the capacity coefficient

is appropriate for this paradigm, but the resilience function is best suited for a

redundant task, so its application here is limited at best.

It may be true, as Navon and Gopher suggested, that there is no "standard"

secondary task due to the effect of modality on dual-task interference (Navon &

Gopher, 1979), with researchers instead choosing minimally invasive secondary tasks for

their chosen primary task. It is prudent for researchers to endeavour to minimise

unwanted interference between tasks and to use a minimally invasive secondary task,

but our findings suggest the modality and salience of a simple stimulus may not have an

appreciable impact on primary task performance. Our findings in relation to the

primary task suggest SFT may be applicable to more real-world tasks than have been

used in previous studies. Either the use of a continuous, temporally-sensitive data set or

a transformed pseudo-RT data set may allow for more sophisticated analysis of

real-world tasks such as driving or flight simulations than has been achieved before.

More research is required to evaluate other UCIP models using continuous data
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sets—the current study used the CSTST(t) model, but tasks that compare data to

COR(t) and CAND(t) benchmarks would extend the current study’s findings and further

scrutinise the methods presented here.

Conclusion

Cognitive models were applied to both a continuous primary tracking task and a

software-based DRT to assess the differential impact of an auditory and visual DRT

stimulus on user workload. The analysis of primary tracking task performance utilised

SFT in a novel application, subjecting continuous tracking data and transformed

pseudo-RT distributions to capacity analysis. Both measures agreed in their finding of

limited capacity. A shifted-Wald model was applied to DRT data, which identified a

marked decrease in the rate of evidence accumulation as task load increased, but did

not find any difference in rate across DRT modality, and only small differences in

response threshold and non-decision time. These findings suggest multi-modal

multi-tasking had limited advantage over single-mode multi-tasking in this simple task,

and that DRT modality had little effect on primary tracking task performance. Our

findings also present novel methods for applying cognitive models to more real-world

data sets in the future.
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Appendices
Appendix A: Model Specifications

Shifted-Wald Model

The shifted-Wald model is a diffusion model where evidence is accumulated

towards a single bound. The rate at which evidence is accumulated is represented by

drift rate, v. The bound towards which the accumulation process moves is represented

by threshold, a. The model is able to account for non-decision time by shifting the

starting time of the accumulation process. The parameter relating to this shift is t0.

Figure 15 depicts the model’s parameters, and the resulting response time distribution.

The density of this distribution is given by the following:

SW(t; a, t0, v) = a√
2π(t− t0)3

exp
(

− [a− v(t− t0)]2
2(t− t0)

)
, t, a, v ≥ 0, t ≥ t0

where t is the first-arrival time. The model used in the current manuscript was

adapted from Steingroever, Wabersich, and Wagenmakers’s (2018) specification of the

shifted-Wald model.

Figure 15 . Shifted-Wald model. v represents drift rate, a represents response threshold,

and t0 represents non-decision time.
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Systems Factorial Technology

Capacity Coefficient. The capacity coefficient, as defined by Townsend and

Nozawa (1995), compares the resources used to respond to a redundant-target task

against the resources used to respond to the individual component channels of the task.

The use of resources was measured by examining the integrated hazard functions of

response time distributions from each condition, which was estimated empirically as the

(minus) logarithm of the survivor function from each condition. The capacity coefficient

of a redundant-target (OR) task can therefore be estimated across time t using the

following:

COR(t) = log[SAB(t)]
log[SA(t) · SB(t)]

where A and B represent individual processing channels and AB denotes the

double-target condition, where processing terminates as soon as the faster of the two

channels completes. Processing time for this condition is the minimum of the individual

channels’ completion times, TAB=min(TA, TB). Note that the above definition only

holds for tasks with an OR stopping rule. Other capacity coefficients have been defined

for other stopping rules, including the single-target self-terminating (STST ) stopping

rule. This index was defined by Blaha (2011) as the resources required to process a

target channel alone compared to the resources required to process that channel in the

presence of other, non-target channels. This coefficient compares cumulative reversed

hazard functions, estimated by taking the logarithm of each condition’s cumulative

distribution function (CDF), F(t). The CDFs are used in place of survivor functions, as

STST tasks require exhaustive processing, as opposed to a minimum-time OR task.

That is to say, processing must be complete on the target channel(s) for a response to

be given, as opposed to only one channel as in the OR stopping rule. The STST

capacity coefficient is defined as

CSTST(t) = log[F k, 1(t)]
log[F k, n(t)]

where k, 1 represents the target channel alone and k, n represents the target

channel in the presence of n other channels.
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The survivor functions and CDFs range between zero and one. This means that

for very small or large values of time t, the numerator and denominator in the above

equations may each approach zero, leading to poor capacity estimates for certain values

of t. One solution to this complication is to use "difference" forms of the capacity

coefficient, which simply subtract the numerator from the denominator. Throughout

this manuscript the capacity STST results are reported in the difference form:

CSTST(t) = log[F k, n(t)] − log[F k, 1(t)]

UCIP Benchmark. Capacity coefficients can be used to estimate capacity by

comparing empirical estimates to a benchmark model. This benchmark represents a

system with parallel and independent processing channels, operating with unlimited

capacity. For convenience, we abbreviate these properties and refer to the benchmark

model as the UCIP model. It therefore exhibits equal processing efficiency for the

numerator and denominator of the equations given above. The UCIP model predicts a

capacity coefficient of one for all values of time t in the ratio form, and a capacity

coefficient of zero for all values of time t in the difference form. Empirical capacity

coefficients that match the benchmark can be interpreted as representing unlimited

capacity, while coefficients below and above the benchmark represent limited- and

super-capacity, respectively.

Appendix B: Pseudo-RT Simulation

As the derivation of pseudo-RT distributions described in the manuscript is novel,

it is necessary to assess the reliability of the technique in deriving pseudo-RTs that

reflect the underlying cognitive processes. SFT makes specific predictions about the

difference in low-and high-load performance in processes with different workload

capacity. However, the pseudo-RT data we derived in the manuscript only described

limited-capacity processes. To investigate whether the derivation technique is capable of

producing pseudo-RTs that reflect the underlying cognitive processes, we simulated data

that represented these different processes and applied the derivation technique with the

prior knowledge of what result the derived pseudo-RTs should produce.
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Data Simulation

To simulate the initial response sub-process, we generated RT data from gamma

distributions whose scale parameters were varied to represent relative performance on

the low- and high-load conditions. In the context of the CSTST(t) model used in the

current study, an unlimited-capacity process will produce equivalent performance on the

two conditions; in a limited-capacity process, high-load performance will be slower than

in the low-load condition, and in a super-capacity process, high-load performance will

be faster than low-load performance. Table 3 shows the parameters used to generate

simulated data for each of these processes. 10,000 data points were simulated for each

distribution, with each value multiplied by 100 to better reflect human response time

data.
Table 3

Parameters used to generate gamma distributions.

Simulated Model Low-Load High-Load

Scale Shape Scale Shape

Limited-Capacity 4 1 7 1

Unlimited-Capacity 4 1 4 1

Super-Capacity 4 1 2 1

The second sub-process, the execution of the tracking task, was deterministic, as

the needle could only be moved at a set rate. The time taken to complete this

sub-process therefore depended on the time taken in the first sub-process, as this

determined the distance between the target and needle at the beginning of the second

sub-process, and the movement of the target during the second sub-process, as direction

changes could change the distance the needle was required to move to finish the trial.

Fifteen blocks of empirical target movement data were used for the simulation

exercise. When the target changed direction, a response time was sampled with

replacement from the distributions described above. During this time, the simulated

needle did not change direction. After the sampled time had passed, the simulated
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needle moved towards the target’s position until it was within the boundaries of the

target object. This process was repeated for all target time series. Pseudo-RT

distributions were derived using the same process as described in the manuscript. The

top panels of Figure 16 show the ECDFs generated from the parameters in Table 3,

while the bottom panels of Figure 16 show the ECDFs of derived pseudo-RTs. The

relationships between high- and low-load conditions are consistent, showing the

derivation technique’s ability to recover the underlying pattern of responses.

Figure 16 . ECDFs for sampled RT distributions (top) and derived pseudo-RT

distributions (bottom) for limited-capacity (left), unlimited-capacity (middle), and

super-capacity (right) processes.

Capacity Analysis

Capacity coefficients were estimated for each of the simulated models. As Figure

17 shows, the capacity coefficients estimated from simulated data correspond to the

workload capacity used in each sampling distribution. For example, the left panel shows

a limited-capacity coefficient (C(t) < 0), the data for which was simulated using the
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limited-capacity sampling distributions depicted in the top-left panel of Figure 16. This

indicates that the pseudo-RT derivation technique and subsequent capacity analysis

correctly identify the underlying simulated cognitive processes.

Figure 17 . Capacity coefficients estimated from pseudo-RTs for limited-capacity (left),

unlimited-capacity (middle), and super-capacity (right) processes.

Summary

We simulated tracking-task time series data based on the RT distributions

predicted in limited-, unlimited- and super-capacity processes. We then applied the

pseudo-RT derivation technique described in the manuscript and carried out a capacity

analysis. In each case, our analysis correctly identified the processing efficiency of the

underlying cognitive processes. This suggests our technique is capable of discriminating

between processes with different workload capacity.

Appendix C: Capacity Coefficient Estimation with Smaller Sample Sizes

As Figure 14 illustrates, estimates of workload capacity changed when the

threshold used to calculate pseudo-RTs was changed. This may not be due to

truncating the distributions as discussed above, but rather due to the estimates

themselves becoming unreliable due to smaller sample sizes when the threshold was

more lenient. To address whether sample sizes changed with different threshold values,

we calculated the average number of observations per condition per participant for each

threshold in Figure 14. On average, a threshold of 0.2°produced 654 pseudo-RTs,

0.3°produced 567 pseudo-RTs, 0.4°produced 480 pseudo-RTs, 0.5°produced 393
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pseudo-RTs, 0.6°produced 305 pseudo-RTs, 0.7°produced 229 pseudo-RTs, 0.8°produced

168 pseudo-RTs, 0.9°produced 125 pseudo-RTs, and 1.0°produced 95 pseudo-RTs per

condition. This trend illustrates the issue raised above—as the threshold became more

lenient, the number of observations decreased. The potential effect of this decreasing

number of observations on the outcome of a capacity analysis was assessed by

generating data sets based on the sample sizes listed above and comparing the accuracy

of capacity estimates from each of these data sets.

Data Resampling

An initial large data set was generated by resampling with replacement from

simulated pseudo-RT distributions generated using the same method outlined in

Appendix B. The resulting distributions were based on an unlimited-capacity process,

with 767 observations in the low-load distribution, and 774 observations in the high-load

distribution. We resampled with replacement from these distributions to generate nine

smaller data sets—the number of observations resampled in each of these data sets was

equal to the average number of observations for each threshold listed above, so the sizes

of these data sets decreased in the same way our empirical data did under more lenient

threshold values. Capacity analysis was then carried out on each data set.

Bootstrapped resampling was used to calculate the average capacity estimate from each

data set—data was resampled from each data set and capacity coefficients estimated

1,000 times and these coefficients were averaged to generate a single averaged capacity

coefficient. The resulting nine averaged capacity coefficients are presented in Figure 18.

Estimates of capacity were stable across data sets, with each estimate correctly

estimating unlimited-capacity for the majority of the time series. The data set with 125

data points (bottom-centre in Figure 18) over-estimated capacity in the first 1,000ms of

the time series, while several other data sets over-estimated capacity for very fast RTs.

Summary

Increasing the threshold of acceptable performance resulted in fewer observations

in empirical pseudo-RT distributions. To assess whether this caused capacity estimates
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to change, we generated data sets with smaller sample sizes by resampling from a single

large data set and estimated capacity coefficients from these smaller sets. We found

that capacity estimates were relatively stable in their correct estimation of

unlimited-capacity, though there were some cases of over-estimation for fast RTs. This

suggests that accurate capacity coefficients may be estimated from smaller data sets.



CROSS-MODAL INTERFERENCE IN DRT 53

Figure 18 . Capacity coefficients estimated from resampled pseudo-RT distributions

with different sample sizes, listed above each graph. Solid lines are capacity coefficients;

dashed lines are UCIP benchmarks.
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